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1. Introduction 
Condition monitoring systems (CMS) for gearboxes have received 

considerable attention in the last decade, primarily due to increased 
number of wind turbines installations and due to the fact that gear-
box failure represents a significant part of wind turbines’ downtime. 
CMS helps to ensure the stability, extends the design life of drivetrain 
element especially gearboxes as a very important part and prevents 
complete failure, which could be very expensive. Thus, if applied 
properly, it allows significant savings. In addition to wind turbines, 
gearboxes are widely known to be used in other industries (energy, 
mining, petrochemical, automotive, etc.), as an element of high im-
portance responsible for the smooth operation of many productions 
systems. Also, the availability of the entire system is almost always 
dependent on the usability of the gearbox. 

Gearbox fault can be identified while the defective component is 
still in operation and repair or replacement can be planned to reduce 
downtime, increase reliability, maximize availability with the ulti-
mate goal of improving profitability. Gearbox condition monitoring 
often refers to gearbox diagnostics, which essentially process data 
with the evaluation of the functionality of a gearbox and detection or 
identification of faults using condition indicators. Different indicators 
could be used for gearbox condition monitoring process depending 
on the interested fault of the type we want to monitor – [3, 4, 13, 
15, 25]. Establishing a reliable health detection system, especially for 

gear fitting faults is the key to ensuring smooth operation of industrial 
equipment [14].

In literature, fault detection and diagnostics of gears can be ob-
tained by using the time domain analysis. In this case, statistical fea-
tures, such as Root Mean Square (RMS), Standard Deviation (StD), 
Kurtosis (KUR), Skewness (SKE), etc., are extracted from vibration 
signals to perform condition monitoring [16]. On the other hand, the 
authors in [18] and [30] propose the use of the frequency analysis to 
identify the characteristic frequencies of the gear defects. Authors in 
[30] used time synchronous resample (TSR) to pre-process the raw 
signal to eliminate the interference of asynchronous shaft signal in 
process of in gearbox fault detection and then the adaptive variational 
mode decomposition is employed to process the fault synchronous 
shaft signals obtained by TSR to extract fault features.

Many of these diagnostic methods are based on vibration spectrum 
analysis or demodulation techniques. The time-domain analysis is pri-
marily performed to track changes during the gear meshing process, 
while time-domain analysis using the Cepstrum function is used for 
periodicity monitoring and modulation phenomena in the frequency 
domain from the sideband components. All of these methods and pro-
cedures have found application in the industry and provide relatively 
reliable diagnostics and often provide gear fault location ability for 
gearboxes with operation parameters at constant or fairly constant 
speed and load. However, this approach requires experienced users 
who will evaluate the status of the gearbox elements by looking at 
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changes in the time or frequency domain relative to the reference con-
dition.  The presence of multiple faults usually makes fault identifica-
tion complex, especially at the early stage of fault when the effects/re-
sponse are not clear. Hence, introducing a neural network that imitate 
the ability of human brains to learn from and adapt to the changing 
environment provides a logical solution – [2, 11]. The techniques such 
as time-frequency distribution, wavelet transform, statistical feature 
extraction, multi-scale morphological filters are satisfactorily applied 
for gear fault identification – [17]. Wang et al. [26] found that the beta 
kurtosis is a very reliable time-domain diagnostic technique, while 
phase modulation is sensitive to imperfections in gears. Ibrahim et al. 
[8] have used the adaptive filtering technique with least mean square 
algorithm to extract gearbox fault features in this case gear mesh fre-
quency and their sidebands. In [6] authors have proposed a multi-
domain manifold method for extracting features from faulty gear and 
bearing. In  [5], using thirteen features from time domain signal and 
fourteen features from frequency domain, signal have been analysed 
in study of gear seeded fault detection and the most successful fea-
tures in time and frequency domain for gear fault identification are 
extracted and evaluated for compound fault.  

Artificial intelligence (AI) based methods tend to replace expe-
rienced users and interfere with the gearbox condition assessment 
process. Generally, they can be divided into supervised learning and 
unsupervised learning methods. Artificial neural networks (ANN) are 
the most well-known method of supervised data categorization. The 
scheme to reduce number of parameters to train neural network in 
process of intelligent fault diagnosis of gearbox is presented in [15]. 
How to train a neural network effectively and efficiently is key point. 
For machine condition monitoring, this has to do in the first place with 
the choice of parameters to be selected that describe the condition of 
the machine. Too many features will increase the complexity of the 
ANN design and at the same increase the training cost and time, and 
too few features could not provide an accurate representation of the 
system for the features to ANN rely on [23]. 

The authors of [10] state that through literature research they have 
observed that artificial neural networks are the most commonly used 
classifiers when it comes to intelligent fault diagnosis methods, which 
consist of two steps: fault feature extraction using signal processing 
techniques and fault classification using a classifier based on artificial 
neural networks. The time required to train the neural network as well 
as the accuracy of the classification is directly related to the number 
of selected features that are used as input parameters. There may be 
features that are irrelevant and redundant in the selected feature set. 
The input feature set can have a large dimensionality that needs to be 
reduced by excluding irrelevant and redundant features. One of the 
most popular linear statistical methods often used in the selection of 
dominant features from a multidimensional data set is the principal 
component analysis (PCA) – [22], [28]. For example, a PCA-based 
feature selection scheme was presented to provide guidance on choos-
ing the most representative features from a multi-domain feature set 
for defect classification in bearing condition monitoring [19]. PCA 
has been proven efficient dimensionality reduction method for fault 
diagnosis, effective in the selection of relevant Principal Components 
(PCs) which describe gearbox state [7].

In this paper, a two-stage feature selection and classification ap-
proaches are used. At the first stage, the PCA reduction technique is 
used and only valuable features are selected for clustering and classi-
fication. To approach this challenge, type of fault and the level identi-
fication for the most common gear faults (fault modes most frequently 
occurring in gears), the objective of this paper is to select most valu-
able features to accurately identify type and also the levels of the se-
lected gear faults. For testing purposes, experimental gearbox test rig 
with constant speed and load is used with different gear fault types 
and multiple fault levels with 500 data samples per fault level.

2. Gear fault detection using vibration analysis
Gear vibration content is primarily due to the cyclically variable 

gear meshing forces. These forces create vibrations that are transmit-
ted to the gearbox housing where they can be measured. The geom-
etry of the gear tooth profile has a crucial influence on the level and 
pattern of the vibration signals. A perfect sinusoidal gear meshing 
force would imply the perfect unique tone (single component) of the 
vibration spectrum, located at the gear mesh frequency. Gear mesh 
frequency calculated at each stage of the transmission is the product 
of the number of teeth of the gears and their rotational frequency. With 
real gears, the surfaces are not ideally smooth and the tooth shape is 
not ideal, so the vibration spectrum will always contain higher har-
monics of the gear mesh frequency combined with other frequency 
components, like rotational speed and its harmonics (Figure 2). In-
teraction of frequency components (gear mesh component amplitude 
variation with rotational speed) in the form of amplitude modulation 
also indicates the existence of the fault and some processing tools 
used in gearbox diagnostics are specially developed to identify the 
sign of modulation in the acquired vibration signal. This can be seen 
and analysed in time and in frequency domain. Figure 1 shows time 
synchronous average of the vibration signal from the test bench used 
in this research (Figure 3). The shape of the signal clearly indicates 
the amplitude modulation of the higher frequency component (gear 
mesh frequency) by the lower frequency component (speed of the ro-
tation of the shaft with the faulty gear). 

Fig. 1. Time synchronous averaged acceleration signal from the test bench

The existence of amplitude modulation can be seen in the frequen-
cy domain too as shown on Figure 2 where regions for the first four  
harmonics of the gear mesh frequency for the faulty gearbox (Figure 
3) are marked. The equidistantly spaced sideband components around 
each gear mesh component corresponds to the rotational speed of the 
faulty gear.  

Fig. 2. Frequency spectra of the gearbox with a missing tooth on a gear with 
marked regions centred around first four harmonics of gear mesh fre-
quency and sideband components 

The level of vibrations and content of time waveforms and frequen-
cy spectra are also highly influenced by the type and level of the fault 
(discrete or uniform, early or late stage) and by the load applied to the 
gearbox. Usability of traditional vibration spectral analysis in reliable 
detection of faults in the gearbox is limited due to the nature of the 
signals generated and due to the mentioned influences and character-
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istic signal components generated by different faults in gears cannot 
always be detected using traditional methods [9]. Reliable diagnostics 
of gearbox health should include advanced methods of signal process-
ing and analysis not just in frequency domain but also in time and 
time-frequency domains. 

 The basic procedure for gearbox fault diagnostics is the use of 
raw time signal spectrum, raw time waveform, and Cepstrum analysis 
[29]. Unfortunately, such techniques usually work in cases of severe 
fault presence and when there is not much interference from other 
high energy components that come from surrounding noise and / or 
other components. Therefore, it is not aimed for early detection of 
gearbox fault occurrence and monitoring, which could improve the 
reliability of the gearbox. Reliable and unambiguous gearbox fault 
diagnosis becomes a challenge because the interest is primarily in de-
tecting fault at an early stage when it is still minor. Only in that case 
the end user has time and resources to properly plan its activities in 
handling the fault by continuous monitoring of its development and 
planning the best time for production stop in order to perform the 
required corrective actions defined by the vibration diagnostics and to 
prevent degradation of gearbox component on time.  

When the discrete gear fault is initiated, the vibration sig-
nal generated by the fault will have very low amplitudes that will be 
masked by other components and by the noise and will impossible to 
detect its presence in the raw signal spectrum. Most proposed meth-
ods for diagnosis of gear faults involve noise reduction of recorded 
signals to facilitate the detection of impulses generated by fault as 
shown in [1], [20], [21] and [27]. A successful fault detection pro-
cedure should, first of all, extract the appropriate frequency content 
of the measured signal and then detect the presence of a fault in the 
separated frequency band. Different types of filtering and time syn-
chronous averaging techniques are among the most commonly used 
techniques for this purpose.

3. Experimental setup
A test bench with a single-stage gearbox was designed and con-

structed. Several cases were analysed: gear with missing tooth, gear 
with chipped tooth with two fault levels, crack in the root of the tooth 
with four fault levels and worn gear pair (surface wear) with three 
fault levels.

Fig. 3. Gearbox test bench

The test bench used in [3] consists of a single-stage gearbox with an 
input shaft connected to 2.2 kW AC motor controlled by a frequency 
inverter (Figure 3). The gearbox output shaft is connected to a 4 kW 
AC motor controlled by another frequency inverter for load purposes 
and is used as a DC generator to dissipate the generated energy to the 
associated resistors. During data collection, gearbox input shaft speed 
was 46 Hz with 7 Nm of torque (load). 

All tests were performed under the same operating conditions, with 
constant speed and load. The gearbox shafts are aligned with motors 
to eliminate shaft misalignment influence during the test. An indus-
trial IEPE accelerometer with 100 mV/g sensitivity was used to record 

the response (vibration) measuring on the bearing housing. An accel-
erometer is mounted on the bearing housing in a vertical direction us-
ing a stud mount. The speed, measured with a contactless laser sensor, 
and vibration signals are further fed into two-channel vibration data 
acquisition and analysis system OneproD MVP-2C. The spur gears 
without profile shift are used with the following characteristics: input 
gear with 25 teeth, 20 mm wide and output gear with 57 teeth, 21 mm 
wide, 3.0 mm modules with a pressure angle of 10.26 degrees.

Different levels of the simulated fault of the chipped gear are shown 
in Figure 4. The fault was introduced using a milling tool with 40 mm 
diameter. The size of this fault in two steps ranged from 0.25 and 0.5 
to the gear width, while for the missing tooth fault this width corre-
sponded to the complete width of the gear, marked as “c”on  Figure 
4. These cases were labelled as OZ0 for healthy gear, OZ1 for 0.25c, 
OZ2 for 0.5c fault and OZ3 for gear with one missing tooth.

Fig. 4. Different gear tooth chipped levels (a) – 0,25c; (b) – 0.50c; (c) c – 1c

Also, investigation in case of simulated gear crack was carried out. 
The cracks at the root of the tooth were introduced using an electrical 

b)

a)

c)
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discharge machine with an electrode 0.5mm thick. For the simulation 
of the different gear crack levels, the crack depths were 0.25, 0.5, 

0.75 and 1 times the half of the chordal tooth thickness, respectively, 
because the tooth will break rapidly when the crack depth is more 
than half of the chordal tooth thickness [24]. Here, the chordal tooth 
thickness was d = 4.78 mm at the pitch line. The crack widths were 
0.25, 0.5, 0.75, and one times the face width c =  20 mm, respec-
tively, as shown on Figure 5. The width of the gear crack through five 
steps ranged 0 (label PRS0), 0.25 (label PRS5), 0.5 (label PRS10), 

Table 1. Dimension of cracks for different crack levels

Crack dimension [%] Depth [mm] Width [mm] Height 
[mm]

25% (label PRS5) 0.5975 mm 5 mm 0.5 mm

50% (label PRS10) 1.195 mm 10 mm 0.5 mm

75% (label PRS15) 1.7925 mm 15 mm 0.5 mm

100% (label PRS20) 2.39 mm 20 mm 0.5 mm

Fig.  5. The four different gear crack levels: (a) crack level 25%; (b) crack 
level 50%; (c) crack level 75%; (d) crack level 100%

b)

a)

c)

d)

Fig. 6. The three different gear wear levels: (a) wear level H1;  
(b) wear level H2; (c) wear level H3

b)

a)

c)
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0.75 (label PRS15), and 1 (label PRS20) times the face width c of the 
gear.  Dimensions of different gear cracks are shown in Table 1.

Different gear wear faults (in three steps) are introduced in such a 
way that a certain amount of quartz sand was inserted into the lubricat-
ing oil and the gearbox operated for 10 minutes under the same opera-
tion condition. After each step measure over the pins was performed 
to determine tooth thickness. In this case, gear tooth wear level was 
measured for driving and driven gear.  The number of teeth used dur-
ing measurement over the pins was four for driving gear and seven for 
the driven gear, all in accordance with [31]. A micrometer screw gage 
with 0.001mm accuracy was used during measurement over the pins. 
The final measurements over the teeth on both gears were determined 
by the arithmetic mean of 8 measurements at different positions along 
with the scope of the gears. The wear of the driving gear was calcu-
lated as the difference of this measurement to the measurement from 
the undamaged gear and these 3 levels of difference, in this case levels 
of gear wear, were: 0.094 mm (label H1), 0.311 mm (Label H2) and 
0.433mm (Label H3), as shown on Figure 6.

4. Methodology, procedure and detection results
Fault diagnosis methods are mainly based on fault features extract-

ed by some signal processing techniques. In this paper the authors of 
this research tested all cases of introduced gear faults and optimal set 
of the features with the highest percentage of classification selected. 
The methodology consists of the following steps:

Extraction of 32 features (according to Figure 7 and Table 2) 1. 
from time and frequency domains in order to determine/verify 
the potential for diagnostics of different gear faults.
Clustering selected number of features through Kohonen’s 2. 
self-organized maps [12] and quality evaluation of feature 
clustering through quantization error.
Classification of selected number of features and assessment 3. 
of the percentage classification success considering the over-
all set of features.
Application of PCA and selection of the most influential fea-4. 
tures.
Classification of selected number of features after PCA, with 5. 
an assessment of the classification success rate considering the 
reduced feature set.
Finally, the features with the highest percentage of classifica-6. 
tion were selected and their potential in identifying gear faults 
that are more useful in the classification process and more ac-
curate type and level of gear fault assessment using ML were 
identified.

Figure 7 illustrates the workflow of proposed methodology for ana-
lysed gear fault types. 

Amplitudes of the GM components were extracted from the ac-
quired frequency spectra. Energies around each GM component are 
actually RMS of amplitudes inside discrete frequency bands centred 
around each GM components and ±5X wide where X stands for the 
rotational speed of the input shaft. This way five modulation side-
bands are included from each side of the GM component, as a central 
frequency. Modulation factor is a ratio of GMF and EGMF at each 
harmonic of GMF. Kurtosis as the fourth standardized moment of 
the time signal was used since its sensitivity to impact components 
in the signal and one of the most traditional and probably also the 
most widely employed feature [1]. Kurtosis from raw signal, from 
time synchronous average and from autocorrelation of the raw signal 
were used. Extractions from cepstrum functions and their different 
combinations (sum, difference, ratio) were used in order to evaluate 
the full potential of cepstrum function in gearbox diagnostics. Crest 
factor is the ratio of peak and RMS value and the crest factor from raw 
and synchronous time average were used. For each induced gear fault 
total of 500 independent recordings were acquired.

5. Diagnostic and detection results
The above-mentioned methodology has been applied to all analysed 

faults separately (chipped tooth, missing tooth, cracked tooth, gear 
wear). In this paper, the results of diagnostics and detection of faults 
will be demonstrated on a complete data set which consists of all the 
data for all analysed cases i.e. for all 12 fault cases (labels). In order to 
develop self-organized Kohonen maps (SOM), Matlab programming 
environment and SOM Toolbox version 2.0 were used – [32]. 

First, detection of the type and level of gear fault was performed 
using an input matrix with 32 extracted vibration features – this was a 
complete set of input features. The quantization error (qe) is calculat-
ed as the mean distance between the input vectors and their winning 
neurons and is used as an estimate of the map resolution. As a method 
of normalization of input vectors in all Kohonen maps covered in this 
paper, the “var” method was used in which all input features after 
normalization have variance of 1. 

The result of the training of SOM when us-
ing the complete set of input features is a map 
with a quantization error of 1.656 (Figure 8 - 
left). As noted, in order to develop a model for 
identifying the gear state or classifying, both, 
the fault type and its level, multilayer percep-
tron neural networks (MLP) using supervised 
training methods, with the propagation of the 
output error backward and with a single layer 
of hidden neurons were used.  The number of 
input neurons is defined by the dimensionality 
of the input vector, while the number of output 
neurons is defined by the type of problem. Each 
case covered by the experimental part of this pa-
per was solved using neural networks analysed 
with 30 different neural network configurations. 
The following network parameters were varied: 
number of neurons in the hidden layer and type Fig. 7. Proposed methodology processing flow for feature selection

Fig. 8. Distance matrix and SOM topology with color coded labels for com-
plete set of 32 features (left) and for the reduced set of 16 features 

(right)



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 22, No. 4, 2020 753

Table 3. Confusion matrix for the best MLP trained with a complete set of 32 input feature.

Label: H1 H2 H3 OZ0 OZ1 OZ2 OZ3 PRS0 PRS10 PRS15 PRS20 PRS5 All

Total 500 500 500 500 500 500 500 500 500 500 501 500 6001

Correct % 80.8 96.2 89 86.6 77 66 81.6 99.8 90.2 94.6 97.4052 99 88.185

Incorrect % 19.2 3.8 11 13.4 23 34 18.4 0.2 9.8 5.4 2.5948 1 11.815

Table 4. Eigenvectors individual and cumulative variance for PCs

Eigenvalues % Total variance Cumulative %

PC1 8.701992 27.19373 27.19373

PC2 7.603384 23.76058 50.9543

PC3 3.788634 11.83948 62.79378

PC4 3.054879 9.5465 72.34028

PC5 2.424033 7.5751 79.91538

PC6 1.202408 3.75753 83.67291

PC7 0.870788 2.72121 86.39412

Table 2. Extracted vibration features

Parameter Label Parameter Label

RMS of vibration velocity [mm/s] in range 10 Hz–1 kHz OLRMS Kurtosis from raw signal postprocess with autocorrelation KURT_AK

RMS of acceleration [g] in range 10 Hz–20 kHz OLACC Amplitude of driving gear rahmonic peak HS

Amplitude of gear mesh (GM) frequency 1xGMF Amplitude of driven gear rahmonic peak LS

Amplitude of GM 2nd harmonic 2xGMF Difference of driven and driving gear rahmonic peak LS_M_HS

Amplitude of GM 3rd harmonic 3xGMF Sum of driven and driving gear rahmonic peak LS_P_HS

Amplitude of GM 4th harmonic  4xGMF Ratio of driving gear rahmonic peak and undamaged (new) 
driving gear rahmonic peak HSC

Energy around GM frequency 1xEGMF Ratio of driven gear rahmonic peak and undamaged (new) 
driven gear rahmonic peak LSC

Energy around GM frequency 2nd harmonic 2xEGMF Difference between HSC and LSC HSC_M_LSC

Energy around GM frequency 3rd harmonic 3xEGMF Sum of HSC and LSC HSC_P_LSC

Energy around GM frequency 4th harmonic 4xEGMF Cepstrum Health Indicator – ratio of „HSC_M_LSC“ and  
„HSC_P_LSC“ CHI

Modulation factor around GM 1xMF Peak-to-peak amplitude from raw signal PP_SIR

Modulation factor around GM 2nd harmonic 2xMF Peak-to-peak amplitude from time synchronous average PP_TSA

Modulation factor around GM 3rd harmonic 3xMF Peak amplitude from raw signal PK_SIR

Modulation factor around GM 4th harmonic 4xMF Peak amplitude from time synchronous average PK_TSA

Kurtosis from raw signal KURT_SIR Crest factor (CF) from raw signal CF_SIR

Kurtosis from time synchronous averaged signal KURT_TSA Crest factor (CF) from time synchronous averaged signal CF_TSA

Fig. 9. Scree plot
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of activation functions of the neurons in the hidden layer. At the end of 
testing different network configurations, only one configuration with 
the best prediction results was selected as a winner. In case of us-
ing the complete set of 32 input features, the confusion matrix of the 
network is presented in Table 3. This network had 17 neurons in the 
hidden layer and had a prediction success of 88.19%.

PCs with eigenvalues above 1 are the first six PCs and, accord-
ing to Kaiser’s criterion, we can choose them so that in the reduced 
dimension we describe the original input dataset with 83.67% of the 
variance (Figure 9). 

In order to find a prediction algorithm with better performance, a 
PCA is performed on the complete input dataset with 32 features to 
define a new a dataset with a reduced dimension. As a result of PCA, 7 
principal components (PCs) have been extracted with the eigenvalues 
shown on Table 4. For this new space of variables, the most influential 
variables are the variables with the highest loadings which are pro-

Table 6. Confusion matrix for the best MLP trained with a reduced set of 16 input features

Label: H1 H2 H3 OZ0 OZ1 OZ2 OZ3 PRS0 PRS10 PRS15 PRS20 PRS5 All

Total 500 500 500 500 500 500 500 500 500 500 501 500 6001

Correct % 100 100 100 99.2 97.8 97.6 99.8 100 100 91 98.6028 100 98.667

Incorrect % 0 0 0 0.8 2.2 2.4 0.2 0 0 9 1.3972 0 1.333

Fig. 10. Loadings for PC1

Table 5. Modeling power for each feature and its importance to PC model

Feature Power Importance Feature Power Importance

LS_M_HS 0.991223 1 KURT_SIR 0.896093 17

LS 0.990368 2 2xEGMF 0.893102 18

LS_P_HS 0.988442 3 3xGMF 0.873908 19

HS 0.987037 4 CF_TSA 0.83275 20

HSC 0.979869 5 3xMF 0.813719 21

HSC_M_LSC 0.979868 6 1xMF 0.813074 22

HSC_P_LSC 0.967299 7 PP_TSA 0.79878 23

LSC 0.960409 8 2xMF 0.785357 24

OLACC 0.946683 9 CF_SIR 0.772903 25

CHI 0.923562 10 KURT_TSA 0.769628 26

3xEGMF 0.923215 11 4xEGMF 0.759167 27

PP_SIR 0.921343 12 PK_TSA 0.756958 28

2xGMF 0.920716 13 1xGMF 0.749699 29

1xEGMF 0.916267 14 4xGMF 0.741551 30

PK_SIR 0.910155 15 4xMF 0.709164 31

OLRMS 0.909475 16 KURT_AK 0.464335 32
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jections on these dominant PCs. Loadings for each variable for first 
principal component (PC1) are shown on Figure 10.

The importance of each feature is calculated through a modelling 
power – features with the highest modelling power are the most rel-
evant for the PC model. Table 5 shows modelling power for each of 
the 32 input features and its importance. As relevant features, the first 
16 were chosen and this defined the reduced set of input features.

With this new – reduced set of input features MLP ANN training 
is performed and the new best configuration is obtained – a network 
with 16 hidden neurons and with a much better prediction success 
98.67%, compared to 88.19% in the case of using a complete set of in-
put features. Confusion matrix for this network is shown in Table 6.

6. Conclusion
Identification of the health condition of complex rotating machines 

like gearboxes where a highly skilled and experienced vibration ana-
lyst is needed to set up the vibration measurement and to evaluate 
the results is much easier using automatic fault diagnostics methods, 
such as supervised and unsupervised ANN. To build an accurate and 
reliable ANN an optimal set of vibration input features is needed. An 
optimal set of input features defines not just a good definition of sca-
lar parameters obtained from the time and frequency domains but also 
the total number of the features. The authors of this research tested all 

cases of introduced gear faults and optimal sets were defined for each 
case. In this paper a part of the research is presented – the case where 
all introduced gear faults were analysed. For this universal case, an 
optimal set of input vibration features is proposed and its selection is 
verified through the increase of ANN prediction accuracy. Use of all 
32 input features resulted in acceptable 88.19% prediction accuracy. 
Dimension reduction, as expected, resulted in better prediction ac-
curacy of 98.67%. This was especially true for cases of chipped gear 
where the percentage of incorrect guess from 34% in case of label 
OZ2 for example, came down to 2.4%. These results correspond to 
cases where speed and load are constant. This set of input features can 
be used not just for ANN modelling but also for manual monitoring 
of gearbox health. In addition to this, it is worth to mention that the 
first eight dominant features are from the cepstrum function which is, 
although well known for long time, most of the time unused in many 
commercial systems for rotating machines vibration condition moni-
toring. This could motivate vibration analysts to use extractions from 
the cepstrum function as a regular part of their vibration data collec-
tion routes. Content of the cepstrum function is related to modulation 
phenomena in signals. Overall acceleration together with the kurtosis 
parameter and crest factor are indicators of impulsiveness inside a 
signal that is expected in case of discrete faults on gears. Crest factors 
and kurtosis parameters on different time signals had a minor model-
ling power. 
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